his image from NASA's Spitzer Space Telescope shows what lies near the sword of the constellation Orion. Image credit: NASA/JPL-Caltech/University of Toledo |
"You need temperatures as hot as lava to make these crystals," said Tom Megeath of the University of Toledo in Ohio. He is the principal investigator of the research and the second author of a new study appearing in Astrophysical Journal Letters. "We propose that the crystals were cooked up near the surface of the forming star, then carried up into the surrounding cloud where temperatures are much colder, and ultimately fell down again like glitter."
Spitzer's infrared detectors spotted the crystal rain around a distant, sun-like embryonic star, or protostar, referred to as HOPS-68, in the constellation Orion.
The crystals are in the form of forsterite. They belong to the olivine family of silicate minerals and can be found everywhere from a periodot gemstone to the green sand beaches of Hawaii to remote galaxies. NASA's Stardust and Deep Impact missions both detected the crystals in their close-up studies of comets.
The Herschel Space Observatory, a European Space Agency-led mission with important NASA contributions, also participated in the study by characterizing the forming star.
"Infrared telescopes such as Spitzer and now Herschel are providing an exciting picture of how all the ingredients of the cosmic stew that makes planetary systems are blended together," said Bill Danchi, senior astrophysicist and program scientist at NASA Headquarters in Washington.
The Spitzer observations were made before it used up its liquid coolant in May 2009 and began its warm mission.
No comments:
Post a Comment